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Abstract—Dynamic graphs are valuable means to represent
the volatility of real-world networks. In such scenarios, dense
subgraph mining is a widely studied task, as it can give insights
about how the relationships change over time. However, there
are cases in which these changes are correlated. For example, in
a road network, a traffic accident affects also the traffic in the
adjacent road segments. We consider the problem of detecting
dense regions of correlation in dynamically evolving networks,
and demonstrate EXCODE, a system that solves two variants of
the problem, which are based on two different density measures.
It enumerates all the subgraphs satisfying certain density and
correlation constraints, but can also detect compact subsets of
limited overlap. In this demonstration, the audience can try
this tool with real-world datasets, hence visualizing, interacting,
and exploring the dense correlated subgraphs discovered in the
mining process. An interactive panel allows them to learn where
the correlations are located in the network, how the regions of
correlation are related to each other, and how they evolve over
time.

Index Terms—Dynamic Graphs; Dense Subgraphs; Correlated
Subgraphs;

I. INTRODUCTION

Graphs have nowadays attracted considerable attention due
to their expressive power and flexibility. Many real life situ-
ations can be naturally modeled through dynamic networks,
which are graphs that change over time. Analyzing only
specific snapshots or aggregates of such networks leaves out
a great deal of valuable information and insights that can be
obtained by studying them over time. Thus, studying dynamic
graphs by taking into consideration the whole evolution history
is of paramount importance.

In the context of dynamic networks, many efforts have been
devoted to dense subgraph mining, which aims at identifying
portions of the network that are highly connected [1], [2], [3].
However, little work has focused on the detection of dense and
correlated regions [4], which represent portions of the network
characterized by similar structural or qualitative changes. This
problem finds application in a wide range of scenarios such as
fault diagnosis and root cause analysis [5], [6], as symptoms
caused by the same root cause tend to have a similar behavior
and be located close in the network.

Example. The BGP protocol establishes how the routers
forward the packets across the Internet. Managing the Internet
network requires, among others, the detection of issues in the
BGP routing topology and then the diagnosis of their causes.

This analysis allows a faster recovery and may prevent these
problems from happening again. The BGP routing topology
can be modeled ad a dynamic graph where nodes are routers
and edges are routing paths. The edges are dynamic because
the corresponding paths can change due to reconfigurations
or faults. A fault at some router can induce changes in
other portions of the graph, as all the paths traversing the
faulty router are affected and must be replaced to ensure
the continuation of the routing operations. As a consequence,
changes in the same periods of time involving a group of
edges close in the graph are likely caused by the same cause.
Therefore, by focusing the attention on a maximal dense group
of temporally correlated routes, the network manager can
isolate the root cause of their faults more easily. However,
in each snapshot of the whole BGP graph there can be a
significant number of elements experiencing a change that
need to be analyzed by the manager, and in addition, not every
change is associated with an anomalous event. Thus, there is
a need for an automatic tool that can simplify the detection
of the issues by finding the regions in the graph whose edges
present a similar pattern of appearance, so that the analyst
need to focus on a small number of network elements.

In this demonstration, we showcase EXCODE, a general
framework for finding dense correlated subgraphs in dynamic
networks. This framework uses two different measures to
compute the density of a group of edges that change over
time, and a measure based on the Pearson correlation to
compute their correlation. To deal with the problem of huge
result sets peculiar to tasks that enumerate all the solutions
satisfying given constraints, the system is also able to select
and return a compact but yet informative subset of solutions.
This subset contains maximal and highly diverse subgraphs
that, all together, are representative of the whole answer set.

II. TECHNICAL BACKGROUND

The input is a dynamic network, which is a graph modeled
as a sequence of static graphs called snapshots:

Definition 1: A dynamic network D = (V,E) is a sequence
of graphs Gi = (V,Ei,!i) with i 2 T , where V is a set of
vertices, Ei✓V⇥V is a set of edges between vertices, !i :
Ei 7! R is an edge weight function, and T is a set of time
instances. The union of the edges of the snapshots is denoted
by E, i.e., E=[i2TEi.



We consider networks where all the snapshots share the
same set of nodes, and assume that !i(e) = 0 if e does not
appear in Gi. When the snapshots are unweighted, the edge
weights !i take values in {0, 1}.

The goal of EXCODE is to extract the dense correlated
subgraphs from D with size smaller than a given threshold
smax. Given the network D, a subgraph H of D is a graph
H = (VH , EH), such that VH ✓ V and EH ✓ E. The density
of a subgraph H in a static graph is generally defined as
the average degree of its nodes, i.e., ⇢(H) = 2|EH |/|VH |.
However, when the graph is dynamic, the edges of H may
not always exist, and thus the average node degree of H

changes over time. Therefore, EXCODE uses two approaches
to aggregate those degrees and obtain a single density score.
The first approach, called minimum density and denoted as
⇢
k

m
, computes the density of H as the minimum density

of any subgraph induced by H across the snapshots where
at least k edges of H are present. The second approach,
called average density and denoted as ⇢

k

a
, computes the

average density. Let Gi(H) = (VH , EH \ Ei) denote the
subgraph induced by H in the snapshot i, and T

k

H
denote

the subset of snapshots where at least k edges of H appear,
i.e., T k

H
= {t | t 2 T and |Et \ EH | � k}. Then,
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If T k

H
is empty then both ⇢

k

m
(H) and ⇢

k

a
(H) are defined to

be 0. Given a density threshold �, a subgraph H is dense if
⇢
k(H) � �, where ⇢

k collectively indicates ⇢
k

m
and ⇢

k

a
. For

each snapshot t 2 T
k

H
, we say that H is active in t.

Note that the set T k

H
is used to account for situations where

H is highly dense in some snapshots, but it does not appear in
other snapshots. For these particular subgraphs, the minimum
density over all the snapshots would be 0 even if there is just
one snapshot in which H does not appear, and the average
density will take low values, even if H has a large average
degree in all the snapshot in which it appears. Using T

k

H
, all

the snapshots where H is absent or where only few of its
edges are present are discarded, hence obtaining larger values
of minimum and average density.

The correlation of H is computed in terms of the pairwise
correlation of its edges. Intuitively, two edges are correlated if
they present a similar pattern of appearance over the snapshots
of the network. Let t(e) = {t1(e), . . . , tT (e)} denote the
sequence of weights of the edge e, i.e., ti(e) = !i(e) for
i 2 T . Then, the correlation c(e1, e2) between two edges e1

and e2 is the Pearson correlation between t(e1) and t(e2).
The correlation of H is defined as the minimum pairwise
correlation among its edges, i.e., cm(H) = minei 6=ej2EH

c(ei, ej), and given a correlation threshold �, H is correlated
if cm(H) � �.

Since a dense correlated subgraph may contain smaller
dense correlated structures due to the nature of the density
and correlation measures, we reduce the size of the answer
set by focusing on the maximal diverse subgraphs, which are
subgraphs that are not contained in other dense correlated

subgraphs and that differ from one another. We calculate the
similarity between two subgraphs G

0=(V 0, E0) and G
00=(V 00,

E
00) using the Jaccard similarity between their edge sets, i.e.,

J(G0
, G

00)=|E0 \ E
00|/|E0 [ E

00|, and we require that the
pairwise similarities are lower than a given similarity threshold
✏.

III. SYSTEM OVERVIEW

EXCODE first identifies the maximal sets of correlated
edges, and then extracts subsets of these edges that form a
maximal dense subgraph according to one of the two density
measure ⇢

k

m
or ⇢

k

a
. Given a dynamic network D = (V,E),

it creates a graph G = (E, E) where the nodes are the edges
E of D, and the edges are the pairs (e1, e2) 2 E ⇥ E with
correlation c(e1, e2) � �. With this construction, a maximal
clique in G corresponds to a maximal set of correlated edges
in D, because a set of nodes forms a clique if and only if the
nodes are all connected, and in this case the corresponding
edges in D have pairwise correlation greater than �. Then,
given the maximal groups of correlated edges C, EXCODE
examines each connected component in C to identify those
constituting maximal dense subgraphs in D, retaining only
a subset of pairwise dissimilar subgraphs according to the
similarity threshold ✏.

Enumeration of the maximal correlated edges. The graph
G is built by computing the correlation c(e1, e2) between each
pair of edges e1, e2 2 E and retaining those pairs satisfying
c(e1, e2) � �. The maximal groups of correlated edges are
enumerated using the GP algorithm [7] for maximal clique
discovery.

Extraction of the dense subgraphs. Given the maximal
groups of correlated edges C, EXCODE needs to extract the
groups of edges that form a maximal dense subgraph, using
either ⇢

k

m
or ⇢

k

a
as density function. Since the edges in a

group are not necessarily connected in D, it first extracts all
the connected components from each group. To allow a faster
discovery of the maximal groups of dense edges, the connected
components are sorted in descending order of their size and
processed iteratively.

If no dense set larger or similar to the current candidate X

has been discovered yet, and if the size of X does not exceed
the threshold smax, the density of X is computed applying
either Equation 1) or Equation 2). When the density is above
the threshold �, X is inserted in the result set S . When the
density is below the threshold �, the set X is not dense; though
some subset X

0 ✓ X may be dense. Therefore, EXCODE
uses an approach based on a 2-approximation algorithm for
the densest subgraph problem [8] to extract the dense subsets
in X . These subsets are inserted into an auxiliary set P . When
all the candidates have been examined, the maximal groups in
P that are not similar to any edge set in S , are finally added
to S .

We evaluated the efficiency and effectiveness of EXCODE
with an extensive set of experiments on both real and synthetic
datasets of increasing size. Figure 1 shows the running time
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Fig. 1. Running time and number of subgraphs extracted from a mobile
network (a) and three hashtag networks (b), varying the threshold k.

and the size of the answer when varying the edge-per-snapshot
threshold k in a mobile communication network of size
(|V |, |E|, |T |) = (5K, 80K, 48) (a), and in three samples of a
hashtag co-occurrence network of size (767, 2K, 2K), (1.2K,
7K, 2K), and (1.3K, 10K, 2K), respectively.

IV. DEMONSTRATION

Goals In this demonstration, the attendees will test the ef-
fectiveness of EXCODE in mining maximal dense correlated
subgraphs in dynamic networks, and observe and examine its
outcomes. Therefore, the goal is two-fold: (i) to recognize
the value that this kind of analysis tool can bring and the
convenience of the results produced in real-world applications,
and (ii) to understand how the system works, how it overcomes
the computational challenges, and how its parameters affect
the output.

The system gives the possibility of characterizing the sub-
graphs extracted from the network, so that they better match
the expectations of the user. Then, an interactive panel displays
the subgraphs discovered, allowing the users to visualize where
the regions of correlation are located, how strong they are,
and how they are related with each other. An additional
panel enables the analysis of each region separately, and in
particular, the users can investigate how each region behaves
over time, how its density changes, and in which snapshots it
is active.
Audience This demonstration is directed at any data practi-
tioner who needs a tool to visualize and interact with large
dynamic networks, and would like to understand how the
network evolves, or more specifically, identify unexpected
and significant events happening in the network. It is also
interesting for any data engineer who needs an effective tool to
detect correlated anomalies in the network under supervision,
and any data researcher who is curious about the challenges
behind understanding how a given dynamic network behaves
over time, and how its changes are related to each other.
Scenario The demonstration starts with loading the dataset
and, optionally, a mapping file containing the node labels
(Figure 2 (a)). Among others, we consider a sequence of
snapshots of the Internet network topology created with the
routing tables used from August 29 to August 31, 2005. In
these days, a catastrophic hurricane hit Florida and Louisiana,
causing major issues also to the routing topology. Once the

(a)

(b)

Fig. 2. Dataset selection (a) and dataset statistics (b).

dataset is loaded, a visualization of its main characteristics,
such as min/avg/max degree, number of edges over time,
degree distribution, and edge distribution, is presented to the
audience (Figure 2 (b)). Then, the system guides the users
towards configuring the parameters of the system according
to their desires. These parameters involve desired levels of
density, correlation, size, activity, and redundancy in the
results. The system explains the role of each parameter, what
values it can take, and how such values affect the output. This
information, together with the insights provided by the charts
displaying the graph characteristics, can help them to select
appropriate values.

Once the parameters are configured, the mining algorithm is
executed, and the results are given to the users. An interactive
panel shows the graph with the dense groups of correlated
edges highlighted using different colors, as illustrated in
Figure 3(c). The edges in each group are characterized by
a similar behavior over time, and are topologically close in
the snapshots where the group is active. Denser subgraphs
are colored in darker colors, nodes belonging to multiple
subgraphs are indicated in black, and nodes that are not part
of any dense subgraph are in white. The users can interact
with the graph to better understand its structure. For example,
by hovering over a node, they can see to which subgraphs
the node belongs, and by clicking on it they can select that
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Fig. 3. Dense correlated subgraphs (c) and exploration of a subgraph (d).

(or those) subgraph. In addition, they can drag the nodes, and
zoom in and out of the graph. Further information on the dense
subgraphs is provided in a separate hidden panel, allowing
them to understand where the regions of correlation are located
in the network, as well as how they are related with each other.
Finally, the users can explore and analyze a dense subgraph
in isolation, by selecting it in the main panel and clicking
the examine subgraph button. A separate panel (Figure 3 (d))
shows how the subgraph changes over time, how many edges
appears in each snapshot where the subgraph is active, and
the average degree. Different colors are used to highlight the
different types of nodes, according to the mapping file loaded
at the beginning of the demonstration. For example, in the
case of the Internet network topology, the colors indicate the
regional Internet address registries for the five geographical
areas: Asia-pacific, North America, South America, Europe,
and Africa. Thanks to this tool, a network analyst can see
which countries were affected by the disaster and which issues
were caused by the same root cause, sparing him the trouble
of examining each node in the network.

V. RELATED WORK

This work is related to dense subgraph mining in dynamic
networks [9], [3], and in particular, to the problem of enumer-
ating all the dense structures satisfying given constraints [10],
[11], [12], [13]. However, all these works retrieve either the
single best solution or dense subgraphs whose edges are
not temporally correlated. Additional measures of interest-
ingness have been considered in fraud detection, with the

goal of finding suspicious regions. These works measure the
suspiciousness as the negative log likelihood according to a
Poisson distribution [14], [15], the difference in density with
the previous snapshots [16], or the sum of the anomaly scores
of the nodes and edges [17]. Although they propose more
complex measures, they do not detect groups of edges with
similar behavior over time. A notion of correlation has been
introduced by Guan et al. [18] and Yu et al. [19], which,
however, assign a label to each node and retrieve those nodes
that unusually deviate during some time interval. The most
related approaches to this work [20], [4] find regions of
correlated temporal change in dynamic graphs by expressing
the temporal similarity between two edges as the Euclidean
similarity between their time series, and the spatial similarity
as the shortest path distance. They iterate over the snapshots
of the graph using a window of fixed size, and for each
window, they hard partition all the edges using first the
temporal distance and then the spatial distance. In contrast,
we enumerate only the groups of edges with large density and
high pairwise edge correlation.
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